Compare Carbon vs Nitrogen: Periodic Table Element Comparison Table and Properties
Compare the elements Carbon and Nitrogen on the basis of their properties, attributes and periodic table facts. Compare elements - Carbon and Nitrogen comparison table side by side across over 90 properties. All the elements of similar categories show a lot of similarities and differences in their chemical, atomic, physical properties and uses. These similarities and dissimilarities should be known while we study periodic table elements. You can study the detailed comparison between Carbon vs Nitrogen with most reliable information about their properties, attributes, facts, uses etc. You can compare C vs N on more than 90 properties like electronegativity, oxidation state, atomic shells, orbital structure, Electronaffinity, physical states, electrical conductivity and many more. This in-depth comparison helps students, educators, researchers, and science enthusiasts understand the differences and similarities between Carbon and Nitrogen.
Carbon and Nitrogen Comparison
Here's a detailed comparison between Carbon (C) and Nitrogen (N), focusing on their position in the periodic table, physical and chemical properties, stability, and uses.
Facts - Basic Element Details
Name | Carbon | Nitrogen |
---|---|---|
Atomic Number | 6 | 7 |
Atomic Symbol | C | N |
Atomic Weight | 12.0107 | 14.0067 |
Phase at STP | Solid | Gas |
Color | Black | Colorless |
Metallic Classification | Other Nonmetal | Other Nonmetal |
Group in Periodic Table | group 14 | group 15 |
Group Name | carbon family | nitrogen family |
Period in Periodic Table | period 2 | period 2 |
Block in Periodic Table | p -block | p -block |
Electronic Configuration | [He] 2s2 2p2 | [He] 2s2 2p3 |
Electronic Shell Structure (Electrons per shell) | 2, 4 | 2, 5 |
Melting Point | 3823 K | 63.05 K |
Boiling Point | 4300 K | 77.36 K |
CAS Number | CAS7440-44-0 | CAS7727-37-9 |
Neighborhood Elements | Neighborhood Elements of Carbon | Neighborhood Elements of Nitrogen |
History
Parameter | Carbon | Nitrogen |
---|---|---|
History | The element Carbon was discovered by Egyptians and Sumerians in year 3750 BCE. Carbon derived its name the Latin word carbo, meaning 'coal'. | The element Nitrogen was discovered by D. Rutherford in year 1772 in United Kingdom. Nitrogen derived its name from the Greek word nitron and '-gen' meaning 'niter-forming'. |
Discovery | Egyptians and Sumerians (3750 BCE) | D. Rutherford (1772) |
Isolated | () | D. Rutherford (1772) |
Presence: Abundance in Nature and Around Us
Parts per billion (ppb) by weight / by atoms (1ppb =10^-7 %)
Property | Carbon | Nitrogen |
---|---|---|
Abundance in Universe | 5000000 / 500000 | 1000000 / 90000 |
Abundance in Sun | 3000000 / 300000 | 1000000 / 90000 |
Abundance in Meteorites | 15000000 / 18000000 | 1400000 / 1400000 |
Abundance in Earth's Crust | 1800000 / 3100000 | 20000 / 29000 |
Abundance in Oceans | 28000 / 14400 | 500 / 220 |
Abundance in Humans | 230000000 / 120000000 | 26000000 / 12000000 |
Crystal Structure and Atomic Structure
Property | Carbon | Nitrogen |
---|---|---|
Atomic Volume | 5.29 cm3/mol | 22.4131 cm3/mol |
Atomic Radius | 67 pm | 56 pm |
Covalent Radius | 77 pm | 75 pm |
Van der Waals Radius | 170 pm | 155 pm |
Atomic Spectrum - Spectral Lines | ||
Emission Spectrum | ![]() | ![]() |
Absorption Spectrum | ![]() | ![]() |
Lattice Constant | 246.4, 246.4, 671.1 pm | 386.1, 386.1, 626.5 pm |
Lattice Angle | π/2, π/2, 2 π/3 | π/2, π/2, 2 π/3 |
Space Group Name | P63/mmc | P63/mmc |
Space Group Number | 194 | 194 |
Crystal Structure | Simple Hexagonal ![]() | Simple Hexagonal ![]() |
Atomic and Orbital Properties
Property | Carbon | Nitrogen |
---|---|---|
Atomic Number | 6 | 7 |
Number of Electrons (with no charge) | 6 | 7 |
Number of Protons | 6 | 7 |
Mass Number | 12.0107 | 14.0067 |
Number of Neutrons | 6 | 7 |
Shell structure (Electrons per energy level) | 2, 4 | 2, 5 |
Electron Configuration | [He] 2s2 2p2 | [He] 2s2 2p3 |
Valence Electrons | 2s2 2p2 | 2s2 2p3 |
Oxidation State | -4, -3, -2, -1, 0, 1, 2, 3, 4 | -3, 3, 5 |
Atomic Term Symbol (Quantum Numbers) | 3P0 | 4S3/2 |
Shell structure | ![]() | ![]() |
Isotopes and Nuclear Properties
Carbon has 2 stable naturally occuring isotopes while Nitrogen has 2 stable naturally occuring isotopes.
Parameter | Carbon | Nitrogen |
---|---|---|
Known Isotopes | 8C, 9C, 10C, 11C, 12C, 13C, 14C, 15C, 16C, 17C, 18C, 19C, 20C, 21C, 22C | 10N, 11N, 12N, 13N, 14N, 15N, 16N, 17N, 18N, 19N, 20N, 21N, 22N, 23N, 24N, 25N |
Stable Isotopes | Naturally occurring stable isotopes: 12C, 13C | Naturally occurring stable isotopes: 14N, 15N |
Neutron Cross Section | 0.0035 | 1.91 |
Neutron Mass Absorption | 0.000015 | 0.0048 |
Chemical Properties: Ionization Energies and electron affinity
Property | Carbon | Nitrogen |
---|---|---|
Valence or Valency | 4 | 3 |
Electronegativity | 2.55 Pauling Scale | 3.04 Pauling Scale |
Oxidation State | -4, -3, -2, -1, 0, 1, 2, 3, 4 | -3, 3, 5 |
Electron Affinity | 153.9 kJ/mol | 7 kJ/mol |
Ionization Energies | 1st: 1086.5 kJ/mol 2nd: 2352.6 kJ/mol 3rd: 4620.5 kJ/mol 4th: 6222.7 kJ/mol 5th: 37831 kJ/mol 6th: 47277 kJ/mol | 1st: 1402.3 kJ/mol 2nd: 2856 kJ/mol 3rd: 4578.1 kJ/mol 4th: 7475 kJ/mol 5th: 9444.9 kJ/mol 6th: 53266.6 kJ/mol 7th: 64360 kJ/mol |
Physical Properties
Nitrogen (0.001251 g/cm³) is less dense than Carbon (2.26 g/cm³). This means that a given volume of Carbon will be heavier than the same volume of Nitrogen. Carbon is about 180555.5 denser than Nitrogen
Property | Carbon | Nitrogen |
---|---|---|
Phase at STP | Solid | Gas |
Color | Black | Colorless |
Density | 2.26 g/cm3 | 0.001251 g/cm3 |
Density (when liquid (at melting point)) | - | - |
Molar Volume | 5.29 cm3/mol | 22.4131 cm3/mol |
Mechanical and Hardness Properties
Property | Carbon | Nitrogen |
---|---|---|
Elastic Properties | ||
Young Modulus | - | - |
Shear Modulus | - | - |
Bulk Modulus | 33 GPa | - |
Poisson Ratio | - | - |
Hardness - Tests to Measure of Hardness of Element | ||
Mohs Hardness | 0.5 MPa | - |
Vickers Hardness | - | - |
Brinell Hardness | - | - |
Thermal and Electrical Conductivity
Property | Carbon | Nitrogen |
---|---|---|
Heat and Conduction Properties | ||
Thermal Conductivity | 140 W/(m K) | 0.02583 W/(m K) |
Thermal Expansion | 0.0000071 /K | - |
Electrical Properties | ||
Electrical Conductivity | 100000 S/m | - |
Resistivity | 0.00001 m Ω | - |
Superconducting Point | - | - |
Magnetic and Optical Properties
Property | Carbon | Nitrogen |
---|---|---|
Magnetic Properties | ||
Magnetic Type | Diamagnetic | Diamagnetic |
Curie Point | - | - |
Mass Magnetic Susceptibility | -6.2e-9 m3/kg | -5.4e-9 m3/kg |
Molar Magnetic Susceptibility | -7.45e-11 m3/mol | -1.5e-10 m3/mol |
Volume Magnetic Susceptibility | -0.000014 | -6.8e-9 |
Optical Properties | ||
Refractive Index | 2.417 | 1.000298 |
Acoustic Properties | ||
Speed of Sound | 18350 m/s | 333.6 m/s |
Thermal Properties - Enthalpies and thermodynamics
Property | Carbon | Nitrogen |
---|---|---|
Melting Point | 3823 K | 63.05 K |
Boiling Point | 4300 K | 77.36 K |
Critical Temperature | - | 126.21 K |
Superconducting Point | - | - |
Enthalpies | ||
Heat of Fusion | 105 kJ/mol | 0.36 kJ/mol |
Heat of Vaporization | 715 kJ/mol | 2.79 kJ/mol |
Heat of Combustion | -393.5 J/(kg K) | - |
Regulatory and Health - Health and Safety Parameters and Guidelines
Parameter | Carbon | Nitrogen |
---|---|---|
CAS Number | CAS7440-44-0 | CAS7727-37-9 |
RTECS Number | {RTECSHL4158550, RTECSFF5250100, RTECSMD9659600, N/A} | RTECSQW9700000 |
DOT Hazard Class | 4.2 | 2.2 |
DOT Numbers | 1361 | 1977 |
EU Number | - | - |
NFPA Fire Rating | 1 | 0 |
NFPA Health Rating | 0 | 3 |
NFPA Reactivity Rating | 0 | 0 |
NFPA Hazards | - | - |
AutoIgnition Point | - | - |
Flashpoint | - | - |
Compare Carbon and Nitrogen With Other Elements
Compare Carbon and Nitrogen with other elements of the periodic table. Explore howCarbon and Nitrogen stack up against other elements of the periodic table. Use our interactive comparison tool to analyze 90+ properties across different metals, non-metals, metalloids, and noble gases. Understanding these differences is crucial for applications in engineering, chemistry, electronics, biology, and material science.
Compare Carbon with all Group 14 elementsCompare Carbon with FleroviumCompare Carbon with GermaniumCompare Carbon with LeadCompare Carbon with SiliconCompare Carbon with Tin Compare Carbon with all Period 2 elementsCompare Carbon with BerylliumCompare Carbon with BoronCompare Carbon with FluorineCompare Carbon with NitrogenCompare Carbon with NeonCompare Carbon with LithiumCompare Carbon with Oxygen Compare Carbon with all Other Nonmetal elements | Compare Nitrogen with all Group 15 elementsNitrogen vs Antimony ComparisonNitrogen vs Arsenic ComparisonNitrogen vs Bismuth ComparisonNitrogen vs Phosphorus ComparisonNitrogen vs Moscovium Comparison Compare Nitrogen with all Period 2 elementsNitrogen vs Beryllium ComparisonNitrogen vs Boron ComparisonNitrogen vs Carbon ComparisonNitrogen vs Fluorine ComparisonNitrogen vs Neon ComparisonNitrogen vs Lithium ComparisonNitrogen vs Oxygen Comparison Compare Nitrogen with all Other Nonmetal elements |