Compare Carbon vs Silicon: Periodic Table Element Comparison Table and Properties
Compare the elements Carbon and Silicon on the basis of their properties, attributes and periodic table facts. Compare elements - Carbon and Silicon comparison table side by side across over 90 properties. All the elements of similar categories show a lot of similarities and differences in their chemical, atomic, physical properties and uses. These similarities and dissimilarities should be known while we study periodic table elements. You can study the detailed comparison between Carbon vs Silicon with most reliable information about their properties, attributes, facts, uses etc. You can compare C vs Si on more than 90 properties like electronegativity, oxidation state, atomic shells, orbital structure, Electronaffinity, physical states, electrical conductivity and many more. This in-depth comparison helps students, educators, researchers, and science enthusiasts understand the differences and similarities between Carbon and Silicon.
Carbon and Silicon Comparison
Here's a detailed comparison between Carbon (C) and Silicon (Si), focusing on their position in the periodic table, physical and chemical properties, stability, and uses.
Facts - Basic Element Details
Name | Carbon | Silicon |
---|---|---|
Atomic Number | 6 | 14 |
Atomic Symbol | C | Si |
Atomic Weight | 12.0107 | 28.0855 |
Phase at STP | Solid | Solid |
Color | Black | Gray |
Metallic Classification | Other Nonmetal | Metalloid |
Group in Periodic Table | group 14 | group 14 |
Group Name | carbon family | carbon family |
Period in Periodic Table | period 2 | period 3 |
Block in Periodic Table | p -block | p -block |
Electronic Configuration | [He] 2s2 2p2 | [Ne] 3s2 3p2 |
Electronic Shell Structure (Electrons per shell) | 2, 4 | 2, 8, 4 |
Melting Point | 3823 K | 1687 K |
Boiling Point | 4300 K | 3173 K |
CAS Number | CAS7440-44-0 | CAS7440-21-3 |
Neighborhood Elements | Neighborhood Elements of Carbon | Neighborhood Elements of Silicon |
History
Parameter | Carbon | Silicon |
---|---|---|
History | The element Carbon was discovered by Egyptians and Sumerians in year 3750 BCE. Carbon derived its name the Latin word carbo, meaning 'coal'. | The element Silicon was discovered by J. Berzelius in year 1823 in Sweden. Silicon derived its name from the Latin silex, 'flint' (originally silicium). |
Discovery | Egyptians and Sumerians (3750 BCE) | J. Berzelius (1823) |
Isolated | () | J. Berzelius (1823) |
Presence: Abundance in Nature and Around Us
Parts per billion (ppb) by weight / by atoms (1ppb =10^-7 %)
Property | Carbon | Silicon |
---|---|---|
Abundance in Universe | 5000000 / 500000 | 700000 / 30000 |
Abundance in Sun | 3000000 / 300000 | 900000 / 40000 |
Abundance in Meteorites | 15000000 / 18000000 | 140000000 / 100000000 |
Abundance in Earth's Crust | 1800000 / 3100000 | 270000000 / 200000000 |
Abundance in Oceans | 28000 / 14400 | 1000 / 220 |
Abundance in Humans | 230000000 / 120000000 | 260000 / 58000 |
Crystal Structure and Atomic Structure
Property | Carbon | Silicon |
---|---|---|
Atomic Volume | 5.29 cm3/mol | 12.054 cm3/mol |
Atomic Radius | 67 pm | 111 pm |
Covalent Radius | 77 pm | 111 pm |
Van der Waals Radius | 170 pm | 210 pm |
Atomic Spectrum - Spectral Lines | ||
Emission Spectrum | ![]() | ![]() |
Absorption Spectrum | ![]() | ![]() |
Lattice Constant | 246.4, 246.4, 671.1 pm | 543.09, 543.09, 543.09 pm |
Lattice Angle | π/2, π/2, 2 π/3 | π/2, π/2, π/2 |
Space Group Name | P63/mmc | Fd_ 3m |
Space Group Number | 194 | 227 |
Crystal Structure | Simple Hexagonal ![]() | Tetrahedral Packing ![]() |
Atomic and Orbital Properties
Property | Carbon | Silicon |
---|---|---|
Atomic Number | 6 | 14 |
Number of Electrons (with no charge) | 6 | 14 |
Number of Protons | 6 | 14 |
Mass Number | 12.0107 | 28.0855 |
Number of Neutrons | 6 | 14 |
Shell structure (Electrons per energy level) | 2, 4 | 2, 8, 4 |
Electron Configuration | [He] 2s2 2p2 | [Ne] 3s2 3p2 |
Valence Electrons | 2s2 2p2 | 3s2 3p2 |
Oxidation State | -4, -3, -2, -1, 0, 1, 2, 3, 4 | -4, 4 |
Atomic Term Symbol (Quantum Numbers) | 3P0 | 3P0 |
Shell structure | ![]() | ![]() |
Isotopes and Nuclear Properties
Carbon has 2 stable naturally occuring isotopes while Silicon has 3 stable naturally occuring isotopes.
Parameter | Carbon | Silicon |
---|---|---|
Known Isotopes | 8C, 9C, 10C, 11C, 12C, 13C, 14C, 15C, 16C, 17C, 18C, 19C, 20C, 21C, 22C | 22Si, 23Si, 24Si, 25Si, 26Si, 27Si, 28Si, 29Si, 30Si, 31Si, 32Si, 33Si, 34Si, 35Si, 36Si, 37Si, 38Si, 39Si, 40Si, 41Si, 42Si, 43Si, 44Si |
Stable Isotopes | Naturally occurring stable isotopes: 12C, 13C | Naturally occurring stable isotopes: 28Si, 29Si, 30Si |
Neutron Cross Section | 0.0035 | 171 |
Neutron Mass Absorption | 0.000015 | 0.0002 |
Chemical Properties: Ionization Energies and electron affinity
Property | Carbon | Silicon |
---|---|---|
Valence or Valency | 4 | 4 |
Electronegativity | 2.55 Pauling Scale | 1.9 Pauling Scale |
Oxidation State | -4, -3, -2, -1, 0, 1, 2, 3, 4 | -4, 4 |
Electron Affinity | 153.9 kJ/mol | 133.6 kJ/mol |
Ionization Energies | 1st: 1086.5 kJ/mol 2nd: 2352.6 kJ/mol 3rd: 4620.5 kJ/mol 4th: 6222.7 kJ/mol 5th: 37831 kJ/mol 6th: 47277 kJ/mol | 1st: 786.5 kJ/mol 2nd: 1577.1 kJ/mol 3rd: 3231.6 kJ/mol 4th: 4355.5 kJ/mol 5th: 16091 kJ/mol 6th: 19805 kJ/mol 7th: 23780 kJ/mol 8th: 29287 kJ/mol 9th: 33878 kJ/mol 10th: 38726 kJ/mol 11th: 45962 kJ/mol 12th: 50502 kJ/mol 13th: 235196 kJ/mol 14th: 257923 kJ/mol |
Physical Properties
Carbon (2.26 g/cm³) is less dense than Silicon (2.33 g/cm³). This means that a given volume of Silicon will be heavier than the same volume of Carbon. Silicon is about 3.1 denser than Carbon
Property | Carbon | Silicon |
---|---|---|
Phase at STP | Solid | Solid |
Color | Black | Gray |
Density | 2.26 g/cm3 | 2.33 g/cm3 |
Density (when liquid (at melting point)) | - | 2.57 g/cm3 |
Molar Volume | 5.29 cm3/mol | 12.054 cm3/mol |
Mechanical and Hardness Properties
Property | Carbon | Silicon |
---|---|---|
Elastic Properties | ||
Young Modulus | - | 47 |
Shear Modulus | - | - |
Bulk Modulus | 33 GPa | 100 GPa |
Poisson Ratio | - | - |
Hardness - Tests to Measure of Hardness of Element | ||
Mohs Hardness | 0.5 MPa | 6.5 MPa |
Vickers Hardness | - | - |
Brinell Hardness | - | - |
Thermal and Electrical Conductivity
Property | Carbon | Silicon |
---|---|---|
Heat and Conduction Properties | ||
Thermal Conductivity | 140 W/(m K) | 150 W/(m K) |
Thermal Expansion | 0.0000071 /K | 0.0000026 /K |
Electrical Properties | ||
Electrical Conductivity | 100000 S/m | 1000 S/m |
Resistivity | 0.00001 m Ω | 0.001 m Ω |
Superconducting Point | - | - |
Magnetic and Optical Properties
Property | Carbon | Silicon |
---|---|---|
Magnetic Properties | ||
Magnetic Type | Diamagnetic | Diamagnetic |
Curie Point | - | - |
Mass Magnetic Susceptibility | -6.2e-9 m3/kg | -1.6e-9 m3/kg |
Molar Magnetic Susceptibility | -7.45e-11 m3/mol | -4.49e-11 m3/mol |
Volume Magnetic Susceptibility | -0.000014 | -0.00000373 |
Optical Properties | ||
Refractive Index | 2.417 | - |
Acoustic Properties | ||
Speed of Sound | 18350 m/s | 2200 m/s |
Thermal Properties - Enthalpies and thermodynamics
Property | Carbon | Silicon |
---|---|---|
Melting Point | 3823 K | 1687 K |
Boiling Point | 4300 K | 3173 K |
Critical Temperature | - | - |
Superconducting Point | - | - |
Enthalpies | ||
Heat of Fusion | 105 kJ/mol | 50.2 kJ/mol |
Heat of Vaporization | 715 kJ/mol | 359 kJ/mol |
Heat of Combustion | -393.5 J/(kg K) | -9055 J/(kg K) |
Regulatory and Health - Health and Safety Parameters and Guidelines
Parameter | Carbon | Silicon |
---|---|---|
CAS Number | CAS7440-44-0 | CAS7440-21-3 |
RTECS Number | {RTECSHL4158550, RTECSFF5250100, RTECSMD9659600, N/A} | RTECSVW0400000 |
DOT Hazard Class | 4.2 | 4.1 |
DOT Numbers | 1361 | 1346 |
EU Number | - | - |
NFPA Fire Rating | 1 | 0 |
NFPA Health Rating | 0 | 1 |
NFPA Reactivity Rating | 0 | 0 |
NFPA Hazards | - | - |
AutoIgnition Point | - | 150 °C |
Flashpoint | - | - |
Compare Carbon and Silicon With Other Elements
Compare Carbon and Silicon with other elements of the periodic table. Explore howCarbon and Silicon stack up against other elements of the periodic table. Use our interactive comparison tool to analyze 90+ properties across different metals, non-metals, metalloids, and noble gases. Understanding these differences is crucial for applications in engineering, chemistry, electronics, biology, and material science.
Compare Carbon with all Group 14 elementsCompare Carbon with FleroviumCompare Carbon with GermaniumCompare Carbon with LeadCompare Carbon with SiliconCompare Carbon with Tin Compare Carbon with all Period 2 elementsCompare Carbon with BerylliumCompare Carbon with BoronCompare Carbon with FluorineCompare Carbon with NitrogenCompare Carbon with NeonCompare Carbon with LithiumCompare Carbon with Oxygen Compare Carbon with all Other Nonmetal elements | Compare Silicon with all Group 14 elementsSilicon vs Carbon ComparisonSilicon vs Flerovium ComparisonSilicon vs Germanium ComparisonSilicon vs Lead ComparisonSilicon vs Tin Comparison Compare Silicon with all Period 3 elementsSilicon vs Argon ComparisonSilicon vs Aluminium ComparisonSilicon vs Phosphorus ComparisonSilicon vs Chlorine ComparisonSilicon vs Sulfur ComparisonSilicon vs Magnesium ComparisonSilicon vs Sodium Comparison Compare Silicon with all Metalloid elements |