Compare Rhodium vs Iodine: Periodic Table Element Comparison Table and Properties
Compare the elements Rhodium and Iodine on the basis of their properties, attributes and periodic table facts. Compare elements - Rhodium and Iodine comparison table side by side across over 90 properties. All the elements of similar categories show a lot of similarities and differences in their chemical, atomic, physical properties and uses. These similarities and dissimilarities should be known while we study periodic table elements. You can study the detailed comparison between Rhodium vs Iodine with most reliable information about their properties, attributes, facts, uses etc. You can compare Rh vs I on more than 90 properties like electronegativity, oxidation state, atomic shells, orbital structure, Electronaffinity, physical states, electrical conductivity and many more. This in-depth comparison helps students, educators, researchers, and science enthusiasts understand the differences and similarities between Rhodium and Iodine.
Rhodium and Iodine Comparison
Here's a detailed comparison between Rhodium (Rh) and Iodine (I), focusing on their position in the periodic table, physical and chemical properties, stability, and uses.
Facts - Basic Element Details
Name | Rhodium | Iodine |
---|---|---|
Atomic Number | 45 | 53 |
Atomic Symbol | Rh | I |
Atomic Weight | 102.9055 | 126.90447 |
Phase at STP | Solid | Solid |
Color | Silver | SlateGray |
Metallic Classification | Transition Metal | Halogens |
Group in Periodic Table | group 9 | group 17 |
Group Name | cobalt family | fluorine family |
Period in Periodic Table | period 5 | period 5 |
Block in Periodic Table | d -block | p -block |
Electronic Configuration | [Kr] 4d8 5s1 | [Kr] 4d10 5s2 5p5 |
Electronic Shell Structure (Electrons per shell) | 2, 8, 18, 16, 1 | 2, 8, 18, 18, 7 |
Melting Point | 2237 K | 386.85 K |
Boiling Point | 3968 K | 457.4 K |
CAS Number | CAS7440-16-6 | CAS7553-56-2 |
Neighborhood Elements | Neighborhood Elements of Rhodium | Neighborhood Elements of Iodine |
History
Parameter | Rhodium | Iodine |
---|---|---|
History | The element Rhodium was discovered by H. Wollaston in year 1804 in United Kingdom. Rhodium derived its name from the Greek rhodos, meaning 'rose coloured'. | The element Iodine was discovered by B. Courtois in year 1811 in France. Iodine derived its name from French iode (after the Greek ioeides, 'violet'). |
Discovery | H. Wollaston (1804) | B. Courtois (1811) |
Isolated | H. Wollaston (1804) | B. Courtois (1811) |
Presence: Abundance in Nature and Around Us
Parts per billion (ppb) by weight / by atoms (1ppb =10^-7 %)
Property | Rhodium | Iodine |
---|---|---|
Abundance in Universe | 0.6 / 0.007 | 1 / 0.01 |
Abundance in Sun | 2 / 0.02 | - / - |
Abundance in Meteorites | 180 / 40 | 260 / 30 |
Abundance in Earth's Crust | 0.70 / 0.1 | 490 / 80 |
Abundance in Oceans | - / - | 60 / 2.9 |
Abundance in Humans | - / - | 200 / 10 |
Crystal Structure and Atomic Structure
Property | Rhodium | Iodine |
---|---|---|
Atomic Volume | 8.2655 cm3/mol | 25.689 cm3/mol |
Atomic Radius | 173 pm | 115 pm |
Covalent Radius | 135 pm | 133 pm |
Van der Waals Radius | - | 198 pm |
Atomic Spectrum - Spectral Lines | ||
Emission Spectrum | ![]() | ![]() |
Absorption Spectrum | ![]() | ![]() |
Lattice Constant | 380.34, 380.34, 380.34 pm | 718.02, 471.02, 981.03 pm |
Lattice Angle | π/2, π/2, π/2 | π/2, π/2, π/2 |
Space Group Name | Fm_ 3m | Cmca |
Space Group Number | 225 | 64 |
Crystal Structure | Face Centered Cubic ![]() | Base Centered Orthorhombic ![]() |
Atomic and Orbital Properties
Property | Rhodium | Iodine |
---|---|---|
Atomic Number | 45 | 53 |
Number of Electrons (with no charge) | 45 | 53 |
Number of Protons | 45 | 53 |
Mass Number | 102.9055 | 126.90447 |
Number of Neutrons | 58 | 74 |
Shell structure (Electrons per energy level) | 2, 8, 18, 16, 1 | 2, 8, 18, 18, 7 |
Electron Configuration | [Kr] 4d8 5s1 | [Kr] 4d10 5s2 5p5 |
Valence Electrons | 4d8 5s1 | 5s2 5p5 |
Oxidation State | 3 | -1, 1, 3, 5, 7 |
Atomic Term Symbol (Quantum Numbers) | 4F9/2 | 2P3/2 |
Shell structure | ![]() | ![]() |
Isotopes and Nuclear Properties
Rhodium has 1 stable naturally occuring isotopes while Iodine has 1 stable naturally occuring isotopes.
Parameter | Rhodium | Iodine |
---|---|---|
Known Isotopes | 89Rh, 90Rh, 91Rh, 92Rh, 93Rh, 94Rh, 95Rh, 96Rh, 97Rh, 98Rh, 99Rh, 100Rh, 101Rh, 102Rh, 103Rh, 104Rh, 105Rh, 106Rh, 107Rh, 108Rh, 109Rh, 110Rh, 111Rh, 112Rh, 113Rh, 114Rh, 115Rh, 116Rh, 117Rh, 118Rh, 119Rh, 120Rh, 121Rh, 122Rh | 108I, 109I, 110I, 111I, 112I, 113I, 114I, 115I, 116I, 117I, 118I, 119I, 120I, 121I, 122I, 123I, 124I, 125I, 126I, 127I, 128I, 129I, 130I, 131I, 132I, 133I, 134I, 135I, 136I, 137I, 138I, 139I, 140I, 141I, 142I, 143I, 144I |
Stable Isotopes | Naturally occurring stable isotopes: 103Rh | Naturally occurring stable isotopes: 127I |
Neutron Cross Section | 145 | 6.2 |
Neutron Mass Absorption | 0.063 | 0.0018 |
Chemical Properties: Ionization Energies and electron affinity
Property | Rhodium | Iodine |
---|---|---|
Valence or Valency | 6 | 7 |
Electronegativity | 2.28 Pauling Scale | 2.66 Pauling Scale |
Oxidation State | 3 | -1, 1, 3, 5, 7 |
Electron Affinity | 109.7 kJ/mol | 295.2 kJ/mol |
Ionization Energies | 1st: 719.7 kJ/mol 2nd: 1740 kJ/mol 3rd: 2997 kJ/mol | 1st: 1008.4 kJ/mol 2nd: 1845.9 kJ/mol 3rd: 3180 kJ/mol |
Physical Properties
Iodine (4.94 g/cm³) is less dense than Rhodium (12.45 g/cm³). This means that a given volume of Rhodium will be heavier than the same volume of Iodine. Rhodium is about 152 denser than Iodine
Property | Rhodium | Iodine |
---|---|---|
Phase at STP | Solid | Solid |
Color | Silver | SlateGray |
Density | 12.45 g/cm3 | 4.94 g/cm3 |
Density (when liquid (at melting point)) | 10.7 g/cm3 | - |
Molar Volume | 8.2655 cm3/mol | 25.689 cm3/mol |
Mechanical and Hardness Properties
Property | Rhodium | Iodine |
---|---|---|
Elastic Properties | ||
Young Modulus | 275 | - |
Shear Modulus | 150 GPa | - |
Bulk Modulus | 380 GPa | 7.7 GPa |
Poisson Ratio | 0.26 | - |
Hardness - Tests to Measure of Hardness of Element | ||
Mohs Hardness | 6 MPa | - |
Vickers Hardness | 1246 MPa | - |
Brinell Hardness | 1100 MPa | - |
Thermal and Electrical Conductivity
Property | Rhodium | Iodine |
---|---|---|
Heat and Conduction Properties | ||
Thermal Conductivity | 150 W/(m K) | 0.449 W/(m K) |
Thermal Expansion | 0.0000082 /K | - |
Electrical Properties | ||
Electrical Conductivity | 23000000 S/m | 1e-7 S/m |
Resistivity | 4.3e-8 m Ω | 10000000 m Ω |
Superconducting Point | - | - |
Magnetic and Optical Properties
Property | Rhodium | Iodine |
---|---|---|
Magnetic Properties | ||
Magnetic Type | Paramagnetic | Diamagnetic |
Curie Point | - | - |
Mass Magnetic Susceptibility | 1.36e-8 m3/kg | -4.5e-9 m3/kg |
Molar Magnetic Susceptibility | 1.4e-9 m3/mol | -1.14e-9 m3/mol |
Volume Magnetic Susceptibility | 0.0001693 | -0.0000222 |
Optical Properties | ||
Refractive Index | - | - |
Acoustic Properties | ||
Speed of Sound | 4700 m/s | - |
Thermal Properties - Enthalpies and thermodynamics
Property | Rhodium | Iodine |
---|---|---|
Melting Point | 2237 K | 386.85 K |
Boiling Point | 3968 K | 457.4 K |
Critical Temperature | - | 819 K |
Superconducting Point | - | - |
Enthalpies | ||
Heat of Fusion | 21.7 kJ/mol | 7.76 kJ/mol |
Heat of Vaporization | 495 kJ/mol | 20.9 kJ/mol |
Heat of Combustion | - | - |
Regulatory and Health - Health and Safety Parameters and Guidelines
Parameter | Rhodium | Iodine |
---|---|---|
CAS Number | CAS7440-16-6 | CAS7553-56-2 |
RTECS Number | RTECSVI9069000 | RTECSNN1575000 |
DOT Hazard Class | 4.1 | 8 |
DOT Numbers | 3089 | 1759 |
EU Number | - | - |
NFPA Fire Rating | - | 0 |
NFPA Health Rating | - | 3 |
NFPA Reactivity Rating | - | 0 |
NFPA Hazards | - | - |
AutoIgnition Point | - | - |
Flashpoint | - | - |
Compare Rhodium and Iodine With Other Elements
Compare Rhodium and Iodine with other elements of the periodic table. Explore howRhodium and Iodine stack up against other elements of the periodic table. Use our interactive comparison tool to analyze 90+ properties across different metals, non-metals, metalloids, and noble gases. Understanding these differences is crucial for applications in engineering, chemistry, electronics, biology, and material science.