Compare Terbium vs Curium: Periodic Table Element Comparison Table and Properties
Compare the elements Terbium and Curium on the basis of their properties, attributes and periodic table facts. Compare elements - Terbium and Curium comparison table side by side across over 90 properties. All the elements of similar categories show a lot of similarities and differences in their chemical, atomic, physical properties and uses. These similarities and dissimilarities should be known while we study periodic table elements. You can study the detailed comparison between Terbium vs Curium with most reliable information about their properties, attributes, facts, uses etc. You can compare Tb vs Cm on more than 90 properties like electronegativity, oxidation state, atomic shells, orbital structure, Electronaffinity, physical states, electrical conductivity and many more. This in-depth comparison helps students, educators, researchers, and science enthusiasts understand the differences and similarities between Terbium and Curium.
Terbium and Curium Comparison
Here's a detailed comparison between Terbium (Tb) and Curium (Cm), focusing on their position in the periodic table, physical and chemical properties, stability, and uses.
Facts - Basic Element Details
Name | Terbium | Curium |
---|---|---|
Atomic Number | 65 | 96 |
Atomic Symbol | Tb | Cm |
Atomic Weight | 158.92534 | 247 |
Phase at STP | Solid | Solid |
Color | Silver | Silver |
Metallic Classification | Lanthanide | Actinide |
Group in Periodic Table | Lanthanide (no group number) | Actinide (no group number) |
Group Name | ||
Period in Periodic Table | period 6 | period 7 |
Block in Periodic Table | f -block | f -block |
Electronic Configuration | [Xe] 4f9 6s2 | [Rn] 5f7 6d1 7s2 |
Electronic Shell Structure (Electrons per shell) | 2, 8, 18, 27, 8, 2 | 2, 8, 18, 32, 25, 9, 2 |
Melting Point | 1629 K | 1618 K |
Boiling Point | 3503 K | 3383 K |
CAS Number | CAS7440-27-9 | CAS7440-51-9 |
Neighborhood Elements | Neighborhood Elements of Terbium | Neighborhood Elements of Curium |
History
Parameter | Terbium | Curium |
---|---|---|
History | The element Terbium was discovered by G. Mosander in year 1842 in Sweden. Terbium derived its name from Ytterby, Sweden. | The element Curium was discovered by G. T. Seaborg, R. A. James and A. Ghiorso in year 1944 in United States. Curium derived its name from Pierre Curie, a physicist, and Marie Curie, a physicist and chemist, named after great scientists by analogy with gadolinium. |
Discovery | G. Mosander (1842) | G. T. Seaborg, R. A. James and A. Ghiorso (1944) |
Isolated | J.C.G. de Marignac (1886) | () |
Presence: Abundance in Nature and Around Us
Parts per billion (ppb) by weight / by atoms (1ppb =10^-7 %)
Property | Terbium | Curium |
---|---|---|
Abundance in Universe | 0.5 / 0.004 | - / - |
Abundance in Sun | 0.1 / 0.001 | - / - |
Abundance in Meteorites | 40 / 5 | - / - |
Abundance in Earth's Crust | 940 / 120 | - / - |
Abundance in Oceans | 0.00014 / 0.000005 | - / - |
Abundance in Humans | - / - | - / - |
Crystal Structure and Atomic Structure
Property | Terbium | Curium |
---|---|---|
Atomic Volume | 19.336 cm3/mol | 18.05 cm3/mol |
Atomic Radius | 225 pm | - |
Covalent Radius | - | - |
Van der Waals Radius | - | - |
Atomic Spectrum - Spectral Lines | ||
Emission Spectrum | ![]() | ![]() |
Absorption Spectrum | ![]() | ![]() |
Lattice Constant | 360.1, 360.1, 569.36 pm | 349.6, 349.6, 1133.1 pm |
Lattice Angle | π/2, π/2, 2 π/3 | π/2, π/2, 2 π/3 |
Space Group Name | P63/mmc | P63/mmc |
Space Group Number | 194 | 194 |
Crystal Structure | Simple Hexagonal ![]() | Simple Hexagonal ![]() |
Atomic and Orbital Properties
Property | Terbium | Curium |
---|---|---|
Atomic Number | 65 | 96 |
Number of Electrons (with no charge) | 65 | 96 |
Number of Protons | 65 | 96 |
Mass Number | 158.92534 | 247 |
Number of Neutrons | 94 | 151 |
Shell structure (Electrons per energy level) | 2, 8, 18, 27, 8, 2 | 2, 8, 18, 32, 25, 9, 2 |
Electron Configuration | [Xe] 4f9 6s2 | [Rn] 5f7 6d1 7s2 |
Valence Electrons | 4f9 6s2 | 5f7 6d1 7s2 |
Oxidation State | 3 | 3 |
Atomic Term Symbol (Quantum Numbers) | 6H15/2 | 9D2 |
Shell structure | ![]() | ![]() |
Isotopes and Nuclear Properties
Terbium has 1 stable naturally occuring isotopes while Curium has 0 stable naturally occuring isotopes.
Parameter | Terbium | Curium |
---|---|---|
Known Isotopes | 136Tb, 137Tb, 138Tb, 139Tb, 140Tb, 141Tb, 142Tb, 143Tb, 144Tb, 145Tb, 146Tb, 147Tb, 148Tb, 149Tb, 150Tb, 151Tb, 152Tb, 153Tb, 154Tb, 155Tb, 156Tb, 157Tb, 158Tb, 159Tb, 160Tb, 161Tb, 162Tb, 163Tb, 164Tb, 165Tb, 166Tb, 167Tb, 168Tb, 169Tb, 170Tb, 171Tb | 233Cm, 234Cm, 235Cm, 236Cm, 237Cm, 238Cm, 239Cm, 240Cm, 241Cm, 242Cm, 243Cm, 244Cm, 245Cm, 246Cm, 247Cm, 248Cm, 249Cm, 250Cm, 251Cm, 252Cm |
Stable Isotopes | Naturally occurring stable isotopes: 159Tb | |
Neutron Cross Section | 23 | 60 |
Neutron Mass Absorption | 0.009 | - |
Chemical Properties: Ionization Energies and electron affinity
Property | Terbium | Curium |
---|---|---|
Valence or Valency | 3 | 4 |
Electronegativity | 1.1 Pauling Scale | 1.28 Pauling Scale |
Oxidation State | 3 | 3 |
Electron Affinity | 50 kJ/mol | - |
Ionization Energies | 1st: 565.8 kJ/mol 2nd: 1110 kJ/mol 3rd: 2114 kJ/mol 4th: 3839 kJ/mol | 1st: 581 kJ/mol |
Physical Properties
Terbium (8.219 g/cm³) is less dense than Curium (13.51 g/cm³). This means that a given volume of Curium will be heavier than the same volume of Terbium. Curium is about 64.4 denser than Terbium
Property | Terbium | Curium |
---|---|---|
Phase at STP | Solid | Solid |
Color | Silver | Silver |
Density | 8.219 g/cm3 | 13.51 g/cm3 |
Density (when liquid (at melting point)) | 7.65 g/cm3 | - |
Molar Volume | 19.336 cm3/mol | 18.05 cm3/mol |
Mechanical and Hardness Properties
Property | Terbium | Curium |
---|---|---|
Elastic Properties | ||
Young Modulus | 56 | - |
Shear Modulus | 22 GPa | - |
Bulk Modulus | 38.7 GPa | - |
Poisson Ratio | 0.26 | - |
Hardness - Tests to Measure of Hardness of Element | ||
Mohs Hardness | - | - |
Vickers Hardness | 863 MPa | - |
Brinell Hardness | 677 MPa | - |
Thermal and Electrical Conductivity
Property | Terbium | Curium |
---|---|---|
Heat and Conduction Properties | ||
Thermal Conductivity | 11 W/(m K) | - |
Thermal Expansion | 0.0000103 /K | - |
Electrical Properties | ||
Electrical Conductivity | 830000 S/m | - |
Resistivity | 0.0000012 m Ω | - |
Superconducting Point | - | - |
Magnetic and Optical Properties
Property | Terbium | Curium |
---|---|---|
Magnetic Properties | ||
Magnetic Type | Paramagnetic | - |
Curie Point | 222 K | - |
Mass Magnetic Susceptibility | 0.0000136 m3/kg | - |
Molar Magnetic Susceptibility | 0.000002161385 m3/mol | - |
Volume Magnetic Susceptibility | 0.1117784 | - |
Optical Properties | ||
Refractive Index | - | - |
Acoustic Properties | ||
Speed of Sound | 2620 m/s | - |
Thermal Properties - Enthalpies and thermodynamics
Property | Terbium | Curium |
---|---|---|
Melting Point | 1629 K | 1618 K |
Boiling Point | 3503 K | 3383 K |
Critical Temperature | - | - |
Superconducting Point | - | - |
Enthalpies | ||
Heat of Fusion | 10.8 kJ/mol | - |
Heat of Vaporization | 295 kJ/mol | - |
Heat of Combustion | - | - |
Regulatory and Health - Health and Safety Parameters and Guidelines
Parameter | Terbium | Curium |
---|---|---|
CAS Number | CAS7440-27-9 | CAS7440-51-9 |
RTECS Number | - | - |
DOT Hazard Class | - | - |
DOT Numbers | - | - |
EU Number | - | - |
NFPA Fire Rating | - | - |
NFPA Health Rating | - | - |
NFPA Reactivity Rating | - | - |
NFPA Hazards | - | - |
AutoIgnition Point | - | - |
Flashpoint | - | - |
Compare Terbium and Curium With Other Elements
Compare Terbium and Curium with other elements of the periodic table. Explore howTerbium and Curium stack up against other elements of the periodic table. Use our interactive comparison tool to analyze 90+ properties across different metals, non-metals, metalloids, and noble gases. Understanding these differences is crucial for applications in engineering, chemistry, electronics, biology, and material science.