Compare Tellurium vs Radium: Periodic Table Element Comparison Table and Properties
Compare the elements Tellurium and Radium on the basis of their properties, attributes and periodic table facts. Compare elements - Tellurium and Radium comparison table side by side across over 90 properties. All the elements of similar categories show a lot of similarities and differences in their chemical, atomic, physical properties and uses. These similarities and dissimilarities should be known while we study periodic table elements. You can study the detailed comparison between Tellurium vs Radium with most reliable information about their properties, attributes, facts, uses etc. You can compare Te vs Ra on more than 90 properties like electronegativity, oxidation state, atomic shells, orbital structure, Electronaffinity, physical states, electrical conductivity and many more. This in-depth comparison helps students, educators, researchers, and science enthusiasts understand the differences and similarities between Tellurium and Radium.
Tellurium and Radium Comparison
Here's a detailed comparison between Tellurium (Te) and Radium (Ra), focusing on their position in the periodic table, physical and chemical properties, stability, and uses.
Facts - Basic Element Details
Name | Tellurium | Radium |
---|---|---|
Atomic Number | 52 | 88 |
Atomic Symbol | Te | Ra |
Atomic Weight | 127.6 | 226 |
Phase at STP | Solid | Solid |
Color | Silver | Silver |
Metallic Classification | Metalloid | Alkaline Earth Metal |
Group in Periodic Table | group 16 | group 2 |
Group Name | oxygen family | beryllium family |
Period in Periodic Table | period 5 | period 7 |
Block in Periodic Table | p -block | s -block |
Electronic Configuration | [Kr] 4d10 5s2 5p4 | [Rn] 7s2 |
Electronic Shell Structure (Electrons per shell) | 2, 8, 18, 18, 6 | 2, 8, 18, 32, 18, 8, 2 |
Melting Point | 722.66 K | 973 K |
Boiling Point | 1261 K | 2010 K |
CAS Number | CAS13494-80-9 | CAS7440-14-4 |
Neighborhood Elements | Neighborhood Elements of Tellurium | Neighborhood Elements of Radium |
History
Parameter | Tellurium | Radium |
---|---|---|
History | The element Tellurium was discovered by F.-J.M. von Reichenstein in year 1782 in Romania. Tellurium derived its name from Latin tellus, meaning 'earth'. | The element Radium was discovered by P. and M. Curie in year 1898 in France. Radium derived its name from the Latin radius, 'ray'. |
Discovery | F.-J.M. von Reichenstein (1782) | P. and M. Curie (1898) |
Isolated | H. Klaproth () | M. Curie (1902) |
Presence: Abundance in Nature and Around Us
Parts per billion (ppb) by weight / by atoms (1ppb =10^-7 %)
Property | Tellurium | Radium |
---|---|---|
Abundance in Universe | 9 / 0.09 | - / - |
Abundance in Sun | - / - | - / - |
Abundance in Meteorites | 2100 / 300 | - / - |
Abundance in Earth's Crust | 1.0 / 0.2 | 0.00010 / 0.00001 |
Abundance in Oceans | - / - | 0.00000001 / 0.0000000003 |
Abundance in Humans | - / - | 0.000001 / 0.00000003 |
Crystal Structure and Atomic Structure
Property | Tellurium | Radium |
---|---|---|
Atomic Volume | 20.449 cm3/mol | 41.09 cm3/mol |
Atomic Radius | 123 pm | - |
Covalent Radius | 135 pm | - |
Van der Waals Radius | 206 pm | 283 pm |
Atomic Spectrum - Spectral Lines | ||
Emission Spectrum | ![]() | ![]() |
Absorption Spectrum | ![]() | ![]() |
Lattice Constant | 445.72, 445.72, 592.9 pm | 514.8, 514.8, 514.8 pm |
Lattice Angle | π/2, π/2, 2 π/3 | π/2, π/2, π/2 |
Space Group Name | P3121 | Im_ 3m |
Space Group Number | 152 | 229 |
Crystal Structure | Simple Trigonal ![]() | Body Centered Cubic ![]() |
Atomic and Orbital Properties
Property | Tellurium | Radium |
---|---|---|
Atomic Number | 52 | 88 |
Number of Electrons (with no charge) | 52 | 88 |
Number of Protons | 52 | 88 |
Mass Number | 127.6 | 226 |
Number of Neutrons | 76 | 138 |
Shell structure (Electrons per energy level) | 2, 8, 18, 18, 6 | 2, 8, 18, 32, 18, 8, 2 |
Electron Configuration | [Kr] 4d10 5s2 5p4 | [Rn] 7s2 |
Valence Electrons | 5s2 5p4 | 7s2 |
Oxidation State | -2, 2, 4, 6 | 2 |
Atomic Term Symbol (Quantum Numbers) | 3P2 | 1S0 |
Shell structure | ![]() | ![]() |
Isotopes and Nuclear Properties
Tellurium has 5 stable naturally occuring isotopes while Radium has 0 stable naturally occuring isotopes.
Parameter | Tellurium | Radium |
---|---|---|
Known Isotopes | 105Te, 106Te, 107Te, 108Te, 109Te, 110Te, 111Te, 112Te, 113Te, 114Te, 115Te, 116Te, 117Te, 118Te, 119Te, 120Te, 121Te, 122Te, 123Te, 124Te, 125Te, 126Te, 127Te, 128Te, 129Te, 130Te, 131Te, 132Te, 133Te, 134Te, 135Te, 136Te, 137Te, 138Te, 139Te, 140Te, 141Te, 142Te | 202Ra, 203Ra, 204Ra, 205Ra, 206Ra, 207Ra, 208Ra, 209Ra, 210Ra, 211Ra, 212Ra, 213Ra, 214Ra, 215Ra, 216Ra, 217Ra, 218Ra, 219Ra, 220Ra, 221Ra, 222Ra, 223Ra, 224Ra, 225Ra, 226Ra, 227Ra, 228Ra, 229Ra, 230Ra, 231Ra, 232Ra, 233Ra, 234Ra |
Stable Isotopes | Naturally occurring stable isotopes: 120Te, 122Te, 124Te, 125Te, 126Te | |
Neutron Cross Section | 5.4 | 20 |
Neutron Mass Absorption | 0.0013 | - |
Chemical Properties: Ionization Energies and electron affinity
Property | Tellurium | Radium |
---|---|---|
Valence or Valency | 6 | 2 |
Electronegativity | 2.1 Pauling Scale | 0.9 Pauling Scale |
Oxidation State | -2, 2, 4, 6 | 2 |
Electron Affinity | 190.2 kJ/mol | - |
Ionization Energies | 1st: 869.3 kJ/mol 2nd: 1790 kJ/mol 3rd: 2698 kJ/mol 4th: 3610 kJ/mol 5th: 5668 kJ/mol 6th: 6820 kJ/mol 7th: 13200 kJ/mol | 1st: 509.3 kJ/mol 2nd: 979 kJ/mol |
Physical Properties
Radium (5 g/cm³) is less dense than Tellurium (6.24 g/cm³). This means that a given volume of Tellurium will be heavier than the same volume of Radium. Tellurium is about 24.8 denser than Radium
Property | Tellurium | Radium |
---|---|---|
Phase at STP | Solid | Solid |
Color | Silver | Silver |
Density | 6.24 g/cm3 | 5 g/cm3 |
Density (when liquid (at melting point)) | 5.7 g/cm3 | - |
Molar Volume | 20.449 cm3/mol | 41.09 cm3/mol |
Mechanical and Hardness Properties
Property | Tellurium | Radium |
---|---|---|
Elastic Properties | ||
Young Modulus | 43 | - |
Shear Modulus | 16 GPa | - |
Bulk Modulus | 65 GPa | - |
Poisson Ratio | - | - |
Hardness - Tests to Measure of Hardness of Element | ||
Mohs Hardness | 2.25 MPa | - |
Vickers Hardness | - | - |
Brinell Hardness | 180 MPa | - |
Thermal and Electrical Conductivity
Property | Tellurium | Radium |
---|---|---|
Heat and Conduction Properties | ||
Thermal Conductivity | 3 W/(m K) | 19 W/(m K) |
Thermal Expansion | - | - |
Electrical Properties | ||
Electrical Conductivity | 10000 S/m | 1000000 S/m |
Resistivity | 0.0001 m Ω | 0.000001 m Ω |
Superconducting Point | - | - |
Magnetic and Optical Properties
Property | Tellurium | Radium |
---|---|---|
Magnetic Properties | ||
Magnetic Type | Diamagnetic | - |
Curie Point | - | - |
Mass Magnetic Susceptibility | -3.9e-9 m3/kg | - |
Molar Magnetic Susceptibility | -4.98e-10 m3/mol | - |
Volume Magnetic Susceptibility | -0.0000243 | - |
Optical Properties | ||
Refractive Index | 1.000991 | - |
Acoustic Properties | ||
Speed of Sound | 2610 m/s | - |
Thermal Properties - Enthalpies and thermodynamics
Property | Tellurium | Radium |
---|---|---|
Melting Point | 722.66 K | 973 K |
Boiling Point | 1261 K | 2010 K |
Critical Temperature | - | - |
Superconducting Point | - | - |
Enthalpies | ||
Heat of Fusion | 17.5 kJ/mol | 8 kJ/mol |
Heat of Vaporization | 48 kJ/mol | 125 kJ/mol |
Heat of Combustion | - | - |
Regulatory and Health - Health and Safety Parameters and Guidelines
Parameter | Tellurium | Radium |
---|---|---|
CAS Number | CAS13494-80-9 | CAS7440-14-4 |
RTECS Number | RTECSWY2625000 | - |
DOT Hazard Class | 6.1 | - |
DOT Numbers | 2811 | - |
EU Number | - | EU231-122-4 |
NFPA Fire Rating | 0 | - |
NFPA Health Rating | 2 | - |
NFPA Reactivity Rating | 0 | - |
NFPA Hazards | - | - |
AutoIgnition Point | 340 °C | - |
Flashpoint | - | - |
Compare Tellurium and Radium With Other Elements
Compare Tellurium and Radium with other elements of the periodic table. Explore howTellurium and Radium stack up against other elements of the periodic table. Use our interactive comparison tool to analyze 90+ properties across different metals, non-metals, metalloids, and noble gases. Understanding these differences is crucial for applications in engineering, chemistry, electronics, biology, and material science.