Periodic Table Element Comparison: Compare Elements - Nitrogen vs Bromine
Compare Nitrogen and Bromine
Compare Nitrogen and Bromine on the basis of their properties, attributes and periodic table facts. Compare elements on more than 90 properties. All the elements of similar categories show a lot of similarities and differences in their chemical, atomic, physical properties and uses. These similarities and dissimilarities should be known while we study periodic table elements. You can study the detailed comparison between Nitrogen vs Bromine with most reliable information about their properties, attributes, facts, uses etc. You can compare N vs Br on more than 90 properties like electronegativity , oxidation state, atomic shells, orbital structure, Electronaffinity, physical states, electrical conductivity and many more.
Facts
Name | Nitrogen | Bromine |
Atomic Number | 7 | 35 |
Atomic Symbol | N | Br |
Atomic Weight | 14.0067 | 79.904 |
Phase at STP | Gas | Liquid |
Color | Colorless | Red |
Metallic Classification | Other Nonmetal | Halogens |
Group in Periodic Table | group 15 | group 17 |
Group Name | nitrogen family | fluorine family |
Period in Periodic Table | period 2 | period 4 |
Block in Periodic Table | p -block | p -block |
Electronic Configuration | [He] 2s2 2p3 | [Ar] 3d10 4s2 4p5 |
Electronic Shell Structure (Electrons per shell) | 2, 5 | 2, 8, 18, 7 |
Melting Point | 63.05 K | 265.8 K |
Boiling Point | 77.36 K | 332 K |
CAS Number | CAS7727-37-9 | CAS7726-95-6 |
Neighborhood Elements | Neighborhood Elements of Nitrogen | Neighborhood Elements of Bromine |
History
History | The element Nitrogen was discovered by D. Rutherford in year 1772 in United Kingdom. Nitrogen derived its name from the Greek word nitron and '-gen' meaning 'niter-forming'. | The element Bromine was discovered by J. Balard and C. Löwig in year 1825 in France. Bromine derived its name from the Greek bromos, meaning 'stench'. |
Discovery | D. Rutherford (1772) | J. Balard and C. Löwig (1825) |
Isolated | D. Rutherford (1772) | J. Balard and C. Löwig (1825) |
Presence: Abundance in Nature and Around Us
Parts per billion (ppb) by weight / by atoms (1ppb =10^-7 %)
Abundance in Universe | 1000000 / 90000 | 7 / 0.1 |
Abundance in Sun | 1000000 / 90000 | - / - |
Abundance in Meteorites | 1400000 / 1400000 | 1200 / 230 |
Abundance in Earth's Crust | 20000 / 29000 | 3000 / 780 |
Abundance in Oceans | 500 / 220 | 67300 / 5210 |
Abundance in Humans | 26000000 / 12000000 | 2900 / 230 |
Crystal Structure and Atomic Structure
Atomic Volume | 22.4131 cm3/mol | 19.78 cm3/mol |
Atomic Radius | 56 pm | 94 pm |
Covalent Radius | 75 pm | 114 pm |
Van der Waals Radius | 155 pm | 185 pm |
Atomic Spectrum | ![]() | ![]() |
Lattice Constant | 386.1, 386.1, 626.5 pm | 672.65, 464.51, 870.23 pm |
Lattice Angle | π/2, π/2, 2 π/3 | π/2, π/2, π/2 |
Space Group Name | P63/mmc | Cmca |
Space Group Number | 194 | 64 |
Crystal Structure | Simple Hexagonal ![]() | Base Centered Orthorhombic ![]() |
Atomic and Orbital Properties
Atomic Number | 7 | 35 |
Number of Electrons (with no charge) | 7 | 35 |
Number of Protons | 7 | 35 |
Mass Number | 14.0067 | 79.904 |
Number of Neutrons | 7 | 45 |
Shell structure (Electrons per energy level) | 2, 5 | 2, 8, 18, 7 |
Electron Configuration | [He] 2s2 2p3 | [Ar] 3d10 4s2 4p5 |
Valence Electrons | 2s2 2p3 | 4s2 4p5 |
Oxidation State | -3, 3, 5 | -1, 1, 3, 5 |
Atomic Term Symbol (Quantum Numbers) | 4S3/2 | 2P3/2 |
Shell structure | ![]() | ![]() |
Isotopes and Nuclear Properties
Nitrogen has 2 stable naturally occuring isotopes while Bromine has 2 stable naturally occuring isotopes.
Known Isotopes | 10N, 11N, 12N, 13N, 14N, 15N, 16N, 17N, 18N, 19N, 20N, 21N, 22N, 23N, 24N, 25N | 67Br, 68Br, 69Br, 70Br, 71Br, 72Br, 73Br, 74Br, 75Br, 76Br, 77Br, 78Br, 79Br, 80Br, 81Br, 82Br, 83Br, 84Br, 85Br, 86Br, 87Br, 88Br, 89Br, 90Br, 91Br, 92Br, 93Br, 94Br, 95Br, 96Br, 97Br |
Stable Isotopes | Naturally occurring stable isotopes: 14N, 15N | Naturally occurring stable isotopes: 79Br, 81Br |
Neutron Cross Section | 1.91 | 6.8 |
Neutron Mass Absorption | 0.0048 | 0.002 |
Chemical Properties: Ionization Energies and electron affinity
Valence or Valency | 3 | 5 |
Electronegativity | 3.04 Pauling Scale | 2.96 Pauling Scale |
Electron Affinity | 7 kJ/mol | 324.6 kJ/mol |
Ionization Energies | 1st: 1402.3 kJ/mol 2nd: 2856 kJ/mol 3rd: 4578.1 kJ/mol 4th: 7475 kJ/mol 5th: 9444.9 kJ/mol 6th: 53266.6 kJ/mol 7th: 64360 kJ/mol | 1st: 1139.9 kJ/mol 2nd: 2103 kJ/mol 3rd: 3470 kJ/mol 4th: 4560 kJ/mol 5th: 5760 kJ/mol 6th: 8550 kJ/mol 7th: 9940 kJ/mol 8th: 18600 kJ/mol |
Physical Properties
Density | 0.001251 g/cm3 | 3.12 g/cm3 |
Molar Volume | 22.4131 cm3/mol | 19.78 cm3/mol |
Elastic Properties | ||
Young Modulus | - | - |
Shear Modulus | - | - |
Bulk Modulus | - | 1.9 GPa |
Poisson Ratio | - | - |
Hardness - Tests to Measure of Hardness of Element | ||
Mohs Hardness | - | - |
Vickers Hardness | - | - |
Brinell Hardness | - | - |
Electrical Properties | ||
Electrical Conductivity | - | 1e-10 S/m |
Resistivity | - | 10000000000 m Ω |
Superconducting Point | - | - |
Heat and Conduction Properties | ||
Thermal Conductivity | 0.02583 W/(m K) | 0.12 W/(m K) |
Thermal Expansion | - | - |
Magnetic Properties | ||
Magnetic Type | Diamagnetic | Diamagnetic |
Curie Point | - | - |
Mass Magnetic Susceptibility | -5.4e-9 m3/kg | -4.9e-9 m3/kg |
Molar Magnetic Susceptibility | -1.5e-10 m3/mol | -7.83e-10 m3/mol |
Volume Magnetic Susceptibility | -6.8e-9 | -0.0000153 |
Optical Properties | ||
Refractive Index | 1.000298 | 1.001132 |
Acoustic Properties | ||
Speed of Sound | 333.6 m/s | - |
Thermal Properties - Enthalpies and thermodynamics
Melting Point | 63.05 K | 265.8 K |
Boiling Point | 77.36 K | 332 K |
Critical Temperature | 126.21 K | 588 K |
Superconducting Point | - | - |
Enthalpies | ||
Heat of Fusion | 0.36 kJ/mol | 5.8 kJ/mol |
Heat of Vaporization | 2.79 kJ/mol | 14.8 kJ/mol |
Heat of Combustion | - | - |
Regulatory and Health - Health and Safety Parameters and Guidelines
CAS Number | CAS7727-37-9 | CAS7726-95-6 |
RTECS Number | RTECSQW9700000 | RTECSEF9100000 |
DOT Hazard Class | 2.2 | 8 |
DOT Numbers | 1977 | 1744 |
EU Number | - | - |
NFPA Fire Rating | 0 | 0 |
NFPA Hazards | - | Oxidizing Agent |
NFPA Health Rating | 3 | 3 |
NFPA Reactivity Rating | 0 | 0 |
AutoIgnition Point | - | - |
Flashpoint | - | -18 °C |
Compare With Other Elements
Compare Nitrogen with all Group 15 elementsNitrogen vs PhosphorusNitrogen vs ArsenicNitrogen vs AntimonyNitrogen vs BismuthNitrogen vs Moscovium Compare Nitrogen with all Period 2 elementsNitrogen vs LithiumNitrogen vs BerylliumNitrogen vs BoronNitrogen vs CarbonNitrogen vs OxygenNitrogen vs FluorineNitrogen vs Neon Compare Nitrogen with all Other Nonmetal elements | Compare Bromine with all Group 17 elementsCompare Bromine with all Period 4 elementsBromine vs PotassiumBromine vs CalciumBromine vs ScandiumBromine vs TitaniumBromine vs VanadiumBromine vs ChromiumBromine vs ManganeseBromine vs IronBromine vs CobaltBromine vs NickelBromine vs CopperBromine vs ZincBromine vs GalliumBromine vs GermaniumBromine vs ArsenicBromine vs SeleniumBromine vs Krypton Compare Bromine with all Halogens elements |