Periodic Table Element Comparison: Compare Elements - Nihonium vs Platinum
Compare Nihonium and Platinum
Compare Nihonium and Platinum on the basis of their properties, attributes and periodic table facts. Compare elements on more than 90 properties. All the elements of similar categories show a lot of similarities and differences in their chemical, atomic, physical properties and uses. These similarities and dissimilarities should be known while we study periodic table elements. You can study the detailed comparison between Nihonium vs Platinum with most reliable information about their properties, attributes, facts, uses etc. You can compare Nh vs Pt on more than 90 properties like electronegativity , oxidation state, atomic shells, orbital structure, Electronaffinity, physical states, electrical conductivity and many more.
Facts
Name | Nihonium | Platinum |
Atomic Number | 113 | 78 |
Atomic Symbol | Nh | Pt |
Atomic Weight | 284 | 195.078 |
Phase at STP | Solid | Solid |
Color | - | Gray |
Metallic Classification | Post Transition Metal | Transition Metal |
Group in Periodic Table | group 13 | group 10 |
Group Name | boron family | nickel family |
Period in Periodic Table | period 7 | period 6 |
Block in Periodic Table | p -block | d -block |
Electronic Configuration | [Rn] 5f14 6d10 7s2 7p1 | [Xe] 4f14 5d9 6s1 |
Electronic Shell Structure (Electrons per shell) | 2, 8, 18, 32, 32, 18, 3 | 2, 8, 18, 32, 17, 1 |
Melting Point | - | 2041.4 K |
Boiling Point | - | 4098 K |
CAS Number | CAS54084-70-7 | CAS7440-06-4 |
Neighborhood Elements | Neighborhood Elements of Nihonium | Neighborhood Elements of Platinum |
History
History | The element Nihonium was discovered by K. Morita et al.(RIKENin Wako, Japan) in year 2004 in Russia and United States. Nihonium derived its name from the Japanese name for Japan, Nihon, where the element was first synthesized. | The element Platinum was discovered by A. de Ulloa in year 1748 in Peru. Platinum derived its name from the Spanish platina, meaning 'little silver'. |
Discovery | K. Morita et al.(RIKENin Wako, Japan) (2004) | A. de Ulloa (1748) |
Isolated | () | () |
Presence: Abundance in Nature and Around Us
Parts per billion (ppb) by weight / by atoms (1ppb =10^-7 %)
Abundance in Universe | - / - | 5 / 0.03 |
Abundance in Sun | - / - | 9 / 0.06 |
Abundance in Meteorites | - / - | 1000 / 100 |
Abundance in Earth's Crust | - / - | 37 / 4 |
Abundance in Oceans | - / - | - / - |
Abundance in Humans | - / - | - / - |
Crystal Structure and Atomic Structure
Atomic Volume | - | 9.09 cm3/mol |
Atomic Radius | - | 177 pm |
Covalent Radius | - | 128 pm |
Van der Waals Radius | - | 175 pm |
Atomic Spectrum | ![]() | ![]() |
Lattice Constant | - | 392.42, 392.42, 392.42 pm |
Lattice Angle | - | π/2, π/2, π/2 |
Space Group Name | - | Fm_ 3m |
Space Group Number | - | 225 |
Crystal Structure | - ![]() | Face Centered Cubic ![]() |
Atomic and Orbital Properties
Atomic Number | 113 | 78 |
Number of Electrons (with no charge) | 113 | 78 |
Number of Protons | 113 | 78 |
Mass Number | 284 | 195.078 |
Number of Neutrons | 171 | 117 |
Shell structure (Electrons per energy level) | 2, 8, 18, 32, 32, 18, 3 | 2, 8, 18, 32, 17, 1 |
Electron Configuration | [Rn] 5f14 6d10 7s2 7p1 | [Xe] 4f14 5d9 6s1 |
Valence Electrons | 7s2 7p1 | 5d9 6s1 |
Oxidation State | - | 2, 4 |
Atomic Term Symbol (Quantum Numbers) | 2P1/2 | 3D3 |
Shell structure | ![]() | ![]() |
Isotopes and Nuclear Properties
Nihonium has 0 stable naturally occuring isotopes while Platinum has 5 stable naturally occuring isotopes.
Known Isotopes | 283Nh, 284Nh, 285Nh, 286Nh, 287Nh | 166Pt, 167Pt, 168Pt, 169Pt, 170Pt, 171Pt, 172Pt, 173Pt, 174Pt, 175Pt, 176Pt, 177Pt, 178Pt, 179Pt, 180Pt, 181Pt, 182Pt, 183Pt, 184Pt, 185Pt, 186Pt, 187Pt, 188Pt, 189Pt, 190Pt, 191Pt, 192Pt, 193Pt, 194Pt, 195Pt, 196Pt, 197Pt, 198Pt, 199Pt, 200Pt, 201Pt, 202Pt |
Stable Isotopes | - | Naturally occurring stable isotopes: 192Pt, 194Pt, 195Pt, 196Pt, 198Pt |
Neutron Cross Section | - | 10 |
Neutron Mass Absorption | - | 0.002 |
Chemical Properties: Ionization Energies and electron affinity
Valence or Valency | - | 6 |
Electronegativity | - | 2.28 Pauling Scale |
Electron Affinity | - | 205.3 kJ/mol |
Ionization Energies | 1st: 870 kJ/mol 2nd: 1791 kJ/mol |
Physical Properties
Density | - | 21.09 g/cm3 |
Molar Volume | - | 9.09 cm3/mol |
Elastic Properties | ||
Young Modulus | - | 168 |
Shear Modulus | - | 61 GPa |
Bulk Modulus | - | 230 GPa |
Poisson Ratio | - | 0.38 |
Hardness - Tests to Measure of Hardness of Element | ||
Mohs Hardness | - | 3.5 MPa |
Vickers Hardness | - | 549 MPa |
Brinell Hardness | - | 392 MPa |
Electrical Properties | ||
Electrical Conductivity | - | 9400000 S/m |
Resistivity | - | 1.1e-7 m Ω |
Superconducting Point | - | - |
Heat and Conduction Properties | ||
Thermal Conductivity | - | 72 W/(m K) |
Thermal Expansion | - | 0.0000088 /K |
Magnetic Properties | ||
Magnetic Type | - | Paramagnetic |
Curie Point | - | - |
Mass Magnetic Susceptibility | - | 1.22e-8 m3/kg |
Molar Magnetic Susceptibility | - | 2.38e-9 m3/mol |
Volume Magnetic Susceptibility | - | 0.0002573 |
Optical Properties | ||
Refractive Index | - | - |
Acoustic Properties | ||
Speed of Sound | - | 2680 m/s |
Thermal Properties - Enthalpies and thermodynamics
Melting Point | - | 2041.4 K |
Boiling Point | - | 4098 K |
Critical Temperature | - | - |
Superconducting Point | - | - |
Enthalpies | ||
Heat of Fusion | - | 20 kJ/mol |
Heat of Vaporization | - | 490 kJ/mol |
Heat of Combustion | - | - |
Regulatory and Health - Health and Safety Parameters and Guidelines
CAS Number | CAS54084-70-7 | CAS7440-06-4 |
RTECS Number | - | RTECSTP2160000 |
DOT Hazard Class | - | 4.1 |
DOT Numbers | - | 3089 |
EU Number | - | - |
NFPA Fire Rating | - | 2 |
NFPA Hazards | - | - |
NFPA Health Rating | - | 1 |
NFPA Reactivity Rating | - | 0 |
AutoIgnition Point | - | - |
Flashpoint | - | - |