Compare Lutetium vs Einsteinium: Periodic Table Element Comparison Table and Properties
Compare the elements Lutetium and Einsteinium on the basis of their properties, attributes and periodic table facts. Compare elements - Lutetium and Einsteinium comparison table side by side across over 90 properties. All the elements of similar categories show a lot of similarities and differences in their chemical, atomic, physical properties and uses. These similarities and dissimilarities should be known while we study periodic table elements. You can study the detailed comparison between Lutetium vs Einsteinium with most reliable information about their properties, attributes, facts, uses etc. You can compare Lu vs Es on more than 90 properties like electronegativity, oxidation state, atomic shells, orbital structure, Electronaffinity, physical states, electrical conductivity and many more. This in-depth comparison helps students, educators, researchers, and science enthusiasts understand the differences and similarities between Lutetium and Einsteinium.
Lutetium and Einsteinium Comparison
Here's a detailed comparison between Lutetium (Lu) and Einsteinium (Es), focusing on their position in the periodic table, physical and chemical properties, stability, and uses.
Facts - Basic Element Details
| Name | Lutetium | Einsteinium |
|---|---|---|
| Atomic Number | 71 | 99 |
| Atomic Symbol | Lu | Es |
| Atomic Weight | 174.967 | 252 |
| Phase at STP | Solid | Solid |
| Color | Silver | - |
| Metallic Classification | Lanthanide | Actinide |
| Group in Periodic Table | group 3 | Actinide (no group number) |
| Group Name | scandium family | |
| Period in Periodic Table | period 6 | period 7 |
| Block in Periodic Table | d -block | f -block |
| Electronic Configuration | [Xe] 4f14 5d1 6s2 | [Rn] 5f11 7s2 |
| Electronic Shell Structure (Electrons per shell) | 2, 8, 18, 32, 9, 2 | 2, 8, 18, 32, 29, 8, 2 |
| Melting Point | 1936 K | 1133 K |
| Boiling Point | 3675 K | - |
| CAS Number | CAS7439-94-3 | CAS7429-92-7 |
| Neighborhood Elements | Neighborhood Elements of Lutetium | Neighborhood Elements of Einsteinium |
History
| Parameter | Lutetium | Einsteinium |
|---|---|---|
| History | The element Lutetium was discovered by C. A. von Welsbach and G. Urbain in year 1906 in France and Germany. Lutetium derived its name from Lutetia, the Latin name for Paris. | The element Einsteinium was discovered by A. Ghiorso et al.(Argonne Laboratory, Los Alamos Laboratory and University of California, Berkeley) in year 1952 in United States. Einsteinium derived its name from Albert Einstein, physicist. |
| Discovery | C. A. von Welsbach and G. Urbain (1906) | A. Ghiorso et al.(Argonne Laboratory, Los Alamos Laboratory and University of California, Berkeley) (1952) |
| Isolated | C. A. von Welsbach (1906) | (1952) |
Presence: Abundance in Nature and Around Us
Parts per billion (ppb) by weight / by atoms (1ppb =10^-7 %)
| Property | Lutetium | Einsteinium |
|---|---|---|
| Abundance in Universe | 0.1 / 0.001 | - / - |
| Abundance in Sun | 1 / 0.01 | - / - |
| Abundance in Meteorites | 30 / 3 | - / - |
| Abundance in Earth's Crust | 560 / 70 | - / - |
| Abundance in Oceans | 0.00015 / 0.000005 | - / - |
| Abundance in Humans | - / - | - / - |
Crystal Structure and Atomic Structure
| Property | Lutetium | Einsteinium |
|---|---|---|
| Atomic Volume | 17.78 cm3/mol | 28.52 cm3/mol |
| Atomic Radius | 217 pm | - |
| Covalent Radius | 160 pm | - |
| Van der Waals Radius | - | - |
Atomic Spectrum - Spectral Lines | ||
| Emission Spectrum | ![]() | Not available |
| Absorption Spectrum | ![]() | ![]() |
| Lattice Constant | 350.31, 350.31, 555.09 pm | - |
| Lattice Angle | π/2, π/2, 2 π/3 | - |
| Space Group Name | P63/mmc | - |
| Space Group Number | 194 | - |
| Crystal Structure | Simple Hexagonal ![]() | Face Centered Cubic ![]() |
Atomic and Orbital Properties
| Property | Lutetium | Einsteinium |
|---|---|---|
| Atomic Number | 71 | 99 |
| Number of Electrons (with no charge) | 71 | 99 |
| Number of Protons | 71 | 99 |
| Mass Number | 174.967 | 252 |
| Number of Neutrons | 104 | 153 |
| Shell structure (Electrons per energy level) | 2, 8, 18, 32, 9, 2 | 2, 8, 18, 32, 29, 8, 2 |
| Electron Configuration | [Xe] 4f14 5d1 6s2 | [Rn] 5f11 7s2 |
| Valence Electrons | 5d1 6s2 | 5f11 7s2 |
| Oxidation State | 3 | 3 |
| Atomic Term Symbol (Quantum Numbers) | 2D3/2 | 5I15/2 |
| Shell structure | ![]() | ![]() |
Isotopes and Nuclear Properties
Lutetium has 1 stable naturally occuring isotopes while Einsteinium has 0 stable naturally occuring isotopes.
| Parameter | Lutetium | Einsteinium |
|---|---|---|
| Known Isotopes | 150Lu, 151Lu, 152Lu, 153Lu, 154Lu, 155Lu, 156Lu, 157Lu, 158Lu, 159Lu, 160Lu, 161Lu, 162Lu, 163Lu, 164Lu, 165Lu, 166Lu, 167Lu, 168Lu, 169Lu, 170Lu, 171Lu, 172Lu, 173Lu, 174Lu, 175Lu, 176Lu, 177Lu, 178Lu, 179Lu, 180Lu, 181Lu, 182Lu, 183Lu, 184Lu | 240Es, 241Es, 242Es, 243Es, 244Es, 245Es, 246Es, 247Es, 248Es, 249Es, 250Es, 251Es, 252Es, 253Es, 254Es, 255Es, 256Es, 257Es, 258Es |
| Stable Isotopes | Naturally occurring stable isotopes: 175Lu | |
| Neutron Cross Section | 84 | 160 |
| Neutron Mass Absorption | 0.022 | - |
Chemical Properties: Ionization Energies and electron affinity
| Property | Lutetium | Einsteinium |
|---|---|---|
| Valence or Valency | 3 | 4 |
| Electronegativity | 1.27 Pauling Scale | 1.3 Pauling Scale |
| Oxidation State | 3 | 3 |
| Electron Affinity | 50 kJ/mol | - |
| Ionization Energies | 1st: 523.5 kJ/mol 2nd: 1340 kJ/mol 3rd: 2022.3 kJ/mol 4th: 4370 kJ/mol 5th: 6445 kJ/mol | 1st: 619 kJ/mol |
Physical Properties
| Property | Lutetium | Einsteinium |
|---|---|---|
| Phase at STP | Solid | Solid |
| Color | Silver | - |
| Density | 9.841 g/cm3 | - |
| Density (when liquid (at melting point)) | 9.3 g/cm3 | - |
| Molar Volume | 17.78 cm3/mol | 28.52 cm3/mol |
Mechanical and Hardness Properties
| Property | Lutetium | Einsteinium |
|---|---|---|
Elastic Properties | ||
| Young Modulus | 69 | - |
| Shear Modulus | 27 GPa | - |
| Bulk Modulus | 48 GPa | - |
| Poisson Ratio | 0.26 | - |
Hardness - Tests to Measure of Hardness of Element | ||
| Mohs Hardness | - | - |
| Vickers Hardness | 1160 MPa | - |
| Brinell Hardness | 893 MPa | - |
Thermal and Electrical Conductivity
| Property | Lutetium | Einsteinium |
|---|---|---|
Heat and Conduction Properties | ||
| Thermal Conductivity | 16 W/(m K) | - |
| Thermal Expansion | 0.0000099 /K | - |
Electrical Properties | ||
| Electrical Conductivity | 1800000 S/m | - |
| Resistivity | 5.59e-7 m Ω | - |
| Superconducting Point | 0.1 | - |
Magnetic and Optical Properties
| Property | Lutetium | Einsteinium |
|---|---|---|
Magnetic Properties | ||
| Magnetic Type | Paramagnetic | - |
| Curie Point | - | - |
| Mass Magnetic Susceptibility | 1.2e-9 m3/kg | - |
| Molar Magnetic Susceptibility | 2.1e-10 m3/mol | - |
| Volume Magnetic Susceptibility | 0.0000118 | - |
Optical Properties | ||
| Refractive Index | - | - |
Acoustic Properties | ||
| Speed of Sound | - | - |
Thermal Properties - Enthalpies and thermodynamics
| Property | Lutetium | Einsteinium |
|---|---|---|
| Melting Point | 1936 K | 1133 K |
| Boiling Point | 3675 K | - |
| Critical Temperature | - | - |
| Superconducting Point | 0.1 | - |
Enthalpies | ||
| Heat of Fusion | 22 kJ/mol | - |
| Heat of Vaporization | 415 kJ/mol | - |
| Heat of Combustion | - | - |
Regulatory and Health - Health and Safety Parameters and Guidelines
| Parameter | Lutetium | Einsteinium |
|---|---|---|
| CAS Number | CAS7439-94-3 | CAS7429-92-7 |
| RTECS Number | - | - |
| DOT Hazard Class | 4.1 | - |
| DOT Numbers | 3089 | - |
| EU Number | - | - |
| NFPA Fire Rating | - | - |
| NFPA Health Rating | - | - |
| NFPA Reactivity Rating | - | - |
| NFPA Hazards | - | - |
| AutoIgnition Point | - | - |
| Flashpoint | - | - |
Compare Lutetium and Einsteinium With Other Elements
Compare Lutetium and Einsteinium with other elements of the periodic table. Explore howLutetium and Einsteinium stack up against other elements of the periodic table. Use our interactive comparison tool to analyze 90+ properties across different metals, non-metals, metalloids, and noble gases. Understanding these differences is crucial for applications in engineering, chemistry, electronics, biology, and material science.








