Periodic Table Element Comparison: Compare Elements - Americium vs Bismuth
Compare Americium and Bismuth
Compare Americium and Bismuth on the basis of their properties, attributes and periodic table facts. Compare elements on more than 90 properties. All the elements of similar categories show a lot of similarities and differences in their chemical, atomic, physical properties and uses. These similarities and dissimilarities should be known while we study periodic table elements. You can study the detailed comparison between Americium vs Bismuth with most reliable information about their properties, attributes, facts, uses etc. You can compare Am vs Bi on more than 90 properties like electronegativity , oxidation state, atomic shells, orbital structure, Electronaffinity, physical states, electrical conductivity and many more.
Facts
Name |
Atomic Number |
Atomic Symbol |
Atomic Weight |
Phase |
Color |
Classification |
Group in Periodic Table |
Group Name |
Period in Periodic Table |
Block in Periodic Table |
Electronic Configuration |
Melting Point |
Boiling Point |
Electronic Shell Structure |
CAS Number |
Neighborhood Elements |
Americium |
95 |
Am |
243 |
Solid |
Silver |
actinide |
N/A |
7 |
f |
[Rn] 5f7 7s2 |
1176 °C |
2011 °C |
2, 8, 18, 32, 25, 8, 2 |
CAS7440-35-9 |
Neighborhood Elements of Americium |
Bismuth |
83 |
Bi |
208.98038 |
Solid |
Gray |
post-transition metal |
15 |
nitrogen family |
6 |
p |
[Xe] 4f14 5d10 6s2 6p3 |
271.3 °C |
1564 °C |
2, 8, 18, 32, 18, 5 |
CAS7440-69-9 |
Neighborhood Elements of Bismuth |
History
History |
The element Americium was discovered by Glenn T. Seaborg in year 1944 in United States. Americium derived its name from from The Americas, as the element was first synthesized on the continent, by analogy with europium |
The element Bismuth was discovered by Claude François Geoffroy in year 1400 in unknown place. Bismuth derived its name derived its name from from German word, now obsolete |
Presence: Abundance in Nature and Around Us
N/A |
None |
None |
None |
None |
None |
7×10-8% |
1×10-6% |
6.9×10-6% |
2.5×10-6% |
2×10-9% |
N/A |
Crystal Structure and Atomic Structure
Atomic Radius |
Atomic Volume |
Covalent Radius |
Van der Waals Radius |
Neutron Cross Section |
Atomic Spectrum |
Lattice Constant |
Lattice Angle |
Space Group Name |
Space Group Number |
Crystal Structure |
175 pm |
17.77615215801 cm3 |
N/A |
N/A |
74 |
![]() |
346.81, 346.81, 1124.1 pm |
π/2, π/2, 2 π/3 |
P63/mmc |
194 |
Simple Hexagonal ![]() |
143 pm |
21.368137014315 cm3 |
146 pm |
N/A |
0.034 |
![]() |
667.4, 611.7, 330.4 pm |
π/2, 1.925622, π/2 |
C12/m1 |
12 |
Base Centered Monoclinic ![]() |
Atomic and Orbital Properties
Atomic Number |
Number of Electrons (with no charge) |
Number of Protons |
Mass Number |
Number of Neutrons |
Shell structure (Electrons per energy level) |
Electron Configuration |
Valence Electrons |
Oxidation State |
Atomic Term Symbol (Quantum Numbers) |
Shell structure |
95 |
95 |
95 |
243 |
148 |
2, 8, 18, 32, 25, 8, 2 |
[Rn] 5f7 7s2 |
5f7 7s2 |
2;3;4;5;6;7 |
8S7/2 |
![]() |
83 |
83 |
83 |
208.98038 |
125.98038 |
2, 8, 18, 32, 18, 5 |
[Xe] 4f14 5d10 6s2 6p3 |
6s2 6p3 |
-3;-2;-1 1;2;3;4;5 |
4S3/2 |
![]() |
Isotopes - Nuclear Properties
Isotopes |
Naturally occurring stable
isotopes: None. |
Naturally occurring stable
isotopes: None. |
Chemical Properties: Ionization Energies and electron affinity
4 |
1.3 |
N/A |
578 kJ/mol |
5 |
2.02 |
91.2 kJ/mol |
703, 1610, 2466, 4370, 5.4×103, 8520 kJ/mol |
Physical Properties
Density |
Molar Volume |
Elastic Properties |
Young Modulus |
Shear Modulus |
Bulk Modulus |
Poisson Ratio |
Hardness - Tests to Measure of Hardness of Element |
Mohs Hardness |
Vickers Hardness |
Brinell Hardness |
Electrical Properties |
Electrical Conductivity |
Resistivity |
Superconducting Point |
Heat and Conduction Properties |
Thermal Conductivity |
Thermal Expansion |
Magnetic Properties |
Magnetic Type |
Curie Point |
Mass Magnetic Susceptibility |
Molar Magnetic Susceptibility |
Volume Magnetic Susceptibility |
Optical Properties |
Refractive Index |
Acoustic Properties |
Speed of Sound |
13.67 g/cm3 |
17.77615215801 |
N/A |
N/A |
N/A |
N/A |
N/A |
N/A |
N/A |
N/A |
N/A |
0.6 |
10 W/(m K) |
N/A |
Paramagnetic |
N/A |
5.15×10-8 |
1.251×10-8 |
0.000704 |
N/A |
N/A |
9.78 g/cm3 |
21.368137014315 |
32 GPa |
12 GPa |
31 GPa |
0.33 |
2.25 MPa |
N/A |
94.2 MPa |
7.7×105 S/m |
1.3×10-6 m Ω |
N/A |
8 W/(m K) |
0.0000134 K-1 |
Diamagnetic |
N/A |
-1.7×10-8 |
-3.6×10-9 |
-0.00017 |
N/A |
1790 m/s |
Thermal Properties - Enthalpies and thermodynamics
1176 °C |
2011 °C |
N/A |
0.6 |
N/A |
N/A |
N/A |
271.3 °C |
1564 °C |
N/A |
N/A |
10.9 kJ/mol |
160 kJ/mol |
N/A |
Regulatory and Health - Health and Safety Parameters and Guidelines
CAS Number |
RTECS Number |
DOT Hazard Class |
DOT Numbers |
EU Number |
NFPA Fire Rating |
NFPA Hazards |
NFPA Health Rating |
NFPA Reactivity Rating |
More |
AutoIgnition Point |
Flashpoint |
CAS7440-35-9 |
N/A |
N/A |
N/A |
N/A |
N/A |
N/A |
N/A |
N/A |
N/A |
N/A |
CAS7440-69-9 |
RTECSEB2600000 |
6.1 |
3080 |
N/A |
N/A |
N/A |
N/A |
N/A |
N/A |
N/A |